Page 167 - Maths Class 06
P. 167

9.   For the value of x  given in the boxes, find the  value of  the expression in each table:

                    (a)              x   expression                  (b)         x    expression

                                    3    3x –  1                                 8   6x -  46
                                    2    3x +  1                                 10 x - 10
                                    0    4x +  5                                 -1 4 -  7x

                                    -1   x + 5                                   9    x - 8
                                    -4 7x +   29                                 2   3x +  2


                                      Computing the Value of an Algebraic Expression


            In order to evaluate algebraic expressions, the first thing is to know how to read algebraic expression.
            For example, 5x means 5 × x                              mn means m × n
                                                                      x
                          3xy² means 3 × x × y × y                        means x ÷ (3 × y).
                                                                     3 y

            Now, to find the value of an algebraic expression, replace the variables by their numerical values and get
            an arithmetic expression which you evaluate by the rules of arithmetic.
            EXAMPLE 1.    (a) If x = 0, y = 2 and z = 1, find the value of 2x²y – 3yz² + 4 y².

                          (b) If x =1, y = 2 and z = 3, find the value of 2x²y – 6xy + xy²z.
            SOLUTION :    (a) Substituting the values of x = 0, y = 2 and z = 1 in the given expression, we get

                                                                               2
                                                           2
                                                 2
                                  2
                               2x y –  6xy +  xy z = 2 ( )0  × 2 – 3 × 2 × ( )1  + 4 2( ) 2
                                                   = 0 – 6 + 16 = 10.
                          (b) Substituting the values of x = 1, y = 2 and z = 3 in the given expression, we get
                                                 2
                                                                                   2
                                                          2
                                  2
                               2x y –  6xy +  xy z =2 ( )1 (2) – 6(1)(2) + (1)( )2 (3)
                                                   = 2 × 1 × 2 – 6 × 2 + 4 × 3
                                                   = 4 – 12 + 12 = 4
            EXAMPLE 2.    If  p=9, q = 4, r = 7 find the value of 9p +  p( 5q +  3r).
            SOLUTION :    Substituting the values of p = 9, q = 4 and r = 7 in the given expression, we get:

                           9p +  p( 5q +  3r) = 9 × 9 + 9 (5 × 4 + 3 × 7)
                                            = 81 + 9 (20 + 21) = 81 + 9 × 41
                                            = 81 + 369 = 450




                      Exercise11.3




               1.   Find the value of the  follow ing expressions for the  given values of variables:
                    (a) x² – y² – z² when x = 1, y = - 2 and z = 3.

                    (b) 4xyz - 2xy + 3xyz when x = -1,    y = 2 and z = 1.
                                                                                                   167
   162   163   164   165   166   167   168   169   170   171   172